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SUMMARY 

Many fluid flow problems of current interest occur in domains that are mappable to a rectangle or a box; 
conformal mappings are particularly useful in this regard. We are concerned here with the efficient solution of 
such problems using finite elements. The central issue is the element choice, and this issue is addressed in terms 
of operation counts, computer memory and 1/0 requirements, and the extent to which code vectorization is 
possible. It is concluded that rectangular (box) elements generally lead to more efficient algorithms that 
triangular (tetrahedral) elements. A synthesis of algorithms, based on bilinear (trilinear) elements, is presented. 
The algorithms have the attributes of simplicity, accuracy, stability and straightforward incorporation of 
boundary conditions. For bilinear and trilinear elements, it is found that product and first-derivative terms 
are well-handled by the Galerkin FE method, but that it is advantageous to go outside of the Galerkin 
framework when treating second-derivative terms. It is particularly important to consider the form of the 
governing equations, vis-a-vis the choice of staggered, non-staggered and/or mixed-order elements, and to 
choose an appropriate time scheme. The described techniques have been successfully applied to a variety of 
problems in regular domains, including the solution of the three-dimensional time-dependent hydrostatic 
primitive equations; these are stiff and include first and second derivative terms, non-linearities and variable 
coefficients due to a conformal mapping. 
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1. INTRODUCTION 

Many fluid flow problems of current interest occur in regular domains. In the context of this paper 
we define a regular domain to be one that can be mapped (conformally or otherwise) to either a 
rectangle or a box. This class of problem is quite large and includes flow in a periodic channel, flow 
around obstacles in an unbounded domain, flow within a rotating annulus and simulation of the 
earth’s atmosphere including orographic effects. Often, when one is interested in understanding 
more about physical phenomena (e.g. convection studies), the choice of geometry is quite arbitrary 
and is frequently taken to be regular for both convenience and efficiency. It is clear that there are 
many problems which are not included in this class (e.g. flow of the world‘s oceans), but we restrict 
ourselves here to flows in regular domains since they nevertheless constitute a widely used class of 
problems. 

The central issue when formulating a finite-element (FE) flow model is the choice of elements, 
since this choice has a very direct impact on the accuracy, stability, computational efficiency and 
simplicity of a given formulation. We address this issue in terms of (i) operation counts, (ii) the 
amount of memory and 1/0 required and (iii) the degree of code vectorization that is possible. 
Illustrative examples are mostly drawn from the atmospheric sciences because of the author’s 
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interests, but the major part of the material presented here is a synthesis of efficient algorithms for 
flow problems in regular domains. 

To help clarify the use of the presented algorithms, we relate them to a non-trivial concrete 
example drawn from meteorology and oceanography, the shallow-water equations on a rotating 
sphere. These equations, although simple in form, are nevertheless very useful for illustrative 
purposes since they include time-dependence, two space dimensions, first and second derivatives, 
non-linear terms, stiffness and variable coefficients due to a co-ordinate transformation (mapping). 
On a polar-stereographic projection, true at 60" N, they are' 

where 

c = S(Vx - Uy) = relative vorticity, 

D = S( Ux + Vy) ='divergence, 
(4) 

( 5 )  

Q = [ + f = absolute vorticity, 

K = S(U2 + V 2 ) / 2  = kinetic energy, 

U = u/m, V =  u/m and S = m2. 

Here, x and y are the co-ordinates of the projection, u and u are the components of the wind 
vector along the axes of the co-ordinate system, 4 is the perturbation geopotential height of the 
free surface about its mean value ((Do), m = (1 + sin 60")/( 1 + sin (latitude)) is the map-scale factor, 
f is the Coriolis parameter and U and Vare termed the wind images. Decomposing the wind 
images in terms of a velocity potential x and a stream function $, we have 

which lead to the relations 

**x + *yy = c/s, 
xxx + x y y  = D/S,  

(10) 

(1 1) 

For a contained flow, $ = 0 and Vx.q = 0 on the boundary, where q is the normal vector at 
boundary. 

Equations (1) and (2) are derived from the momentum equations and (3) is the continuity 
equation. For the corresponding problem in a plane geometry, the equations remain unchanged, 
except that m = s = 1 and f i s  constant. 

In section 2 we examine the impact that the element choice has on the structure of the matrices 
which result from application of the Galerkin finite-element method (GFEM), by comparing the 
computational effort required to evaluate derivatives and products when using (linear) rectangular 
and triangular elements. The key issue here is the efficient solution of the 'mass-matrix problem'. 

A breakdown of the remainder of the paper is: section 3-element order, spatial evolutionary 
error and code modularity; section 4-staggered, non-staggered and mixed-order elements, and 
the form of the governing equations; section 5-stability; section 6-miscellaneous considerat- 
ions; section 7-time schemes and section 8-principal conclusions. 
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2. COMPUTING DERIVATIVES AND PRODUCTS-THE ‘MASS-MATRIX PROBLEM’ 

The essence of the GFEM2*3 is to 

(i) expand the dependent variables of the problem in terms of a set of basis functions, each of 
which is a low-order polynomial of compact support (i.e. non-zero only over a small 
subdomain called an element) 

(ii) insert these expansions into the governing equations and orthogonalize the error to the basis. 

The first task is to geometrically subdivide the domain of the problem into a set of overlapping 
subdomains, and to examine the impact on efficiency of the choice of subdivision. To illustrate this 
point, let us examine the simple (but fundamental) operations of calculating first derivative and 
product terms over a rectangular domain, and contrast the impact of a subdivision of the domain 
into rectangles (Figure l(a)) with that of arbitrarily chosen triangles (Figure l(b)) when using linear 
elements. Clearly triangularization is more general than rectangularization, being applicable to an 
arbitrary polyhedral domain, but here we only concern ourselves with problems in a Cartesian 
geometry. The key issues for problems that are mappable to a Cartesian geometry are 

(i) can we afford the generality of triangles in comparison to rectangles? 
(ii) does either offer any advantage over competing methods such as finite differences? 

As we will see, the answer to (i) is an overwhelming no, whereas the answer to (ii) is a qualified yes 
for rectangular FEs. 

It remains to define the basis functions. For both triangular and rectangular elements we 
associate a basis function with each and every vertex (or node). The basis function associated 
with a given node is defined to be unity at the node, to vary linearly to zero at neighbouring 
nodes and to be identically zero elsewhere. In Figure 1, the given node is denoted by a square 
(B)  and neighbouring nodes by circles (0) ;  the associated basis function is unity at 
squares (B), zero at circles ( 0 )  and non-zero only within the hatched areas. For a 
rectangular element (Figure l(a)), the algebraic variation of the basis function over a hatched 

Figure 1. TWO subdivisions ofa rectangular domain: (a) rectangles, and (b) triangles. Basis functions associated with square 
nodes ( W )  are unity at these nodes (W), vary linearly to zero at neighbourning circular nodes (O) ,  and are zero outside 

hatched areas 
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rectangle is ( a  + bx)(c  + d y )  where a,  b, c and d are determined such that the basis function is 
unity at the given node and zero at the other three nodes of the rectangle. Similarly for triangular 
elements (Figure l(b)), except that the algebraic variation within a hatched triangle is a + bx + cy,  
since a triangle has one less node than a rectangle. For both rectangular and triangular elements 
the basis is an interpolatory one, since the coefficients in the expansion of a function in terms 
of the basis are just the values of the function at the nodes. 

First derivatives 

Consider the problem of evaluating 

u = ux, (12) 
where u is known at the set of nodal points and we require values of u at these nodal points. 
The first step in the FE treatment of this problem is to expand u as 

1 

where ei(x,  y )  is the basis function associated with the ith node (assuming some ordering of 
nodes), the sum over i is the sum over all nodes and ui is the value of u(x ,y)  at the ith node: 
u is also expanded in a similar manner. After insertion of these expansions into (12) and 
orthogonalization of the error to the basis (by multiplying by an arbitrary basis function and 
integrating over the domain), we obtain a set of linear equations of the form 

PV = Qu, (14) 
where u and v are vectors of nodal values, P and Q are large sparse matrices and P is often 
referred to as the mass matrix or projection matrix. For rectangular elements with the usual 
row-wise ordering of elements, both P and Q are block tridiagonal and each block is itself 
tridiagonal. For triangular elements there is no natural ordering and the structure will depend 
on the particular ordering chosen. 

For rectangular elements, (14) may be written explicitly at the point ( x m , y n )  of the mesh 
(Figure l(a)) as 

( 1 / 3 6 ) C h m - , k n ~ m - , , n + ,  + 2 ( h m - 1 +  h m ) k n u m , n + l  

+ 2 h m  - 1 ( k n  - 1 + k n ) u m  - 1 ,n + 4 ( h m  - 1 + h m ) ( k n  - 1 + k n ) v m , n  + 2 h m ( k n  - 1 + k n b m  + 1 ,n 

+ h m -  1 k n -  10 , -  1 ,n -  1 + 2 ( h m -  1 + h m l k n -  1um,n - 1 + h m k n -  1 U m +  1 , n  - 11 

+ k n -  1 (urn+ 1 ,” -  1 - urn - 1.n - i)l, 
= ( 1 / 1 2 ) C k n ( u m  + l , n +  1 - urn - 1 , n  + 1 )  + 2 ( k -  1 + k n ) ( u m  + 1 , n  - urn - 1.n)  

(15) 
where h, = x , + ~  - x m  and k ,  = Y , , + ~  - y n .  The evaluation of the right-hand side of (15) is 
explicit and straightforward to calculate, but it is not immediately clear how to solve efficiently 
for 

The brute-force method of multiplying the right-hand side of (15) by the inverse of P is clearly 
not viable since this requires O ( M 2 N 2 )  arithmetic operations and O ( M 2 N Z )  words of storage 
for an M x N mesh, even when P-’ has been precalculated. The operation count and memory 
requirements may both be reduced to O ( M 2 N )  if a ‘banded-solver’ is used that exploits the fact 
that the elements of P are zero everywhere outside the tridiagonal band of blocks centred on the 
diagonal. Although this is better, it is still a factor of O ( M )  more expensive than the theoretical 

given the implicit way in which it appears. 
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optimum of O ( M N )  operations and storage. Since M - 50-100 in many applications, this is still 
a very expensive proposition, both in terms of arithmetic operations and storage. Cullen4 proposed 
a method that uses a truncated series to obtain an approximate solution, the accuracy of the 
solution depending on the number of terms taken. This method has the advantages of reducing 
memory requirements to optimum order and decreasing the operation count, but has the 
disadvantages of not being exact, not having an optimal operation count and only working for 
uniform grids. Iterative methods suffer from similar deficiencies except that they are applicable 
to non-uniform Cartesian meshes. 

It must be emphasized that it is extremely important to be able efficiently to solve (14) if the 
FE method is to be competitive with the finite-difference (FD) method, since P is the identity 
matrix for F D  methods and the problem is then trivial. The matrix P in the finite-element 
literature is often replaced by the identity matrix (or mass-lumped jn FE parlance), but as we 
shall see later, this may be undesirable since it can lead to a significant reduction in the accuracy 
of the method. 

Efficient solution of the 'mass-matrix problem' for rectangular elements 

An efficient solution algorithm for (14) is easily derived for the rectangular element case (but 
not the triangular element case). This algorithm, even though it first appeared in the meteorological 
literature in 1977,' was not widely used until relatively recently. In the engineering literature it 
has been used in conjunction with approximate factorization and is often referred 
to as the tensor product method. The essence of the solution algorithm is to 

(i) Solve the set of one-dimensional tridiagonal problems 

P X s n = r n , n =  1,2 ,..., N ,  (16) 
for s, along lines of constant y (ie. n fixed) using Gaussian e l imina t i~n ,~  where 

L 

and r,," is the right-hand side of (15). 
Solve the set of one-dimensional tridiagonal problems 

PYvm = s,, m = 1,2, .  . . , M ,  
(ii) 

(17) 
for v, along lines of constant y (i.e. m fixed), again using Gaussian elimination, where 

v, = 

L k N -  1 2kN- 1 

, 
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The above algorithm requires O ( M N )  operations and O ( M N )  storage (i.e. it is of optimum 
order), is stable to round-off error, gives the exact solution (to within round-off error) to the set 
of linear equations defined by (19, easily generalizes to three dimensions, and includes the 
equations appropriate to boundary points. 

To put this in the context of an application code, let M = N = 100, and then the number of 
arithmetic operations and words of storage is 0(104) which poses no problem for a large 
mainframe computer. On the other hand, a ‘banded solver’ would require 0(106) arithmetic 
operations and words of storage, which is two orders of magnitude more voracious. Of these two 
drawbacks (namely the larger number of arithmetic operations and the larger storage require- 
ments) perhaps the most severe is the storage requirement, since the problem is unlikely to fit in 
(computer) memory. This then results in the need to perform extensive 1 /0  to and from mass 
storage” and the code becomes 1/0 bound (i.e. the CPU will spend most of its time waiting for 
operands to arrive from mass storage). 

Regarding vectorization (a very important aspect of coding for supercomputers) the algorithm 
appears, at first sight, not to vectorize, because Gaussian elimination is a set of recursive 
operations. However, by performing each operation of Gaussian elimination in parallel for all 
members of the set of tridiagonal problems in x or y (as the case may be), a vectorizable operation is 
established in the transverse direction, and the algorithm is thus fully vectorizable. 

It is interesting to note that even though the above algorithm is of optimal order, it can 
nevertheless still be improved upon in the context of taking a derivative (e.g. when computing U 
and V from x and II/ using (8) and (9), by exploiting the particular form of the right-hand side of (1  5). 
I t  can be shown that (15) may be rewritten as 

The algorithm thus reduces to solving (1 8) for v,, , along lines of constant y (i.e. constant n). This is 
equivalent to solving a set of one-dimensional FE problems, holding y fixed, and is consistent 
with the underlying mathematics where the x-derivative at  a point is obtained by a limiting 
process holding y fixed. This consistency does not obtain with triangular elements. 

For triangular elements the best we can usually do for the solution of the mass-matrix problem is 
to either use a ‘banded-solver’ or an iterative method, both of which are considerably (typically at 
least an order of magnitude) more expensive than the algorithm for rectangular elements defined 
by (16) and (17). 

Comparison with F D  evaluation of first derivatives 

Let us compare the efficiency and accuracy of evaluating a derivative using linear rectangular 
elements with those using second and fourth-order finite differences. First, we note that on any 
uniform subdomain (i.e. h,- = k,- = h = constant), equation (18) gives an O(h4) accurate 
estimate for the derivative at the nodes, a result often referred to in the literature as super- 
convergence at nodes.2 Triangular elements generally give O(h2) accuracy and furthermore the 
solution of (14) is far more costly, so that we pay considerably more to get considerably less. The 
second-order centred finite-difference solution amounts to replacing the left-hand side of ( I  8) by 
hv,,, (mass-lumping), and in comparison with rectangular FEs we find there is less computational 
effort (approximately a factor 2.5) but considerably less accuracy [O(hZ) compared to O(h4)]. On 
the other hand, fourth-order finite-differences are somewhat more expensive and somewhat less 
accurate than rectangular FEs. 



FLOWS IN REGULAR DOMAINS 7 

Products 

Consider the problem of evaluating a product 

(19) u = uw, 

where u and w are given at nodal points and we require values of u at these nodal points. Expanding 
as before in terms of the basis functions e'(x, y) ,  multiplying by an arbitrary basis function ek(x,  y )  
and orthogonalizing the error to the basis we obtain 

PV = UNV, (20) 
where P is as before, 

(uNv), = uiuj j9 e'(x, y)ej(x,  y)ek(x,  y )  dx dy 
i , j  

the summations over i a n d j  are performed over all nodal points, and 9 is the domain. 
The double sum in (21) is not as formidable as it appears since e k ( x , y )  is only non-zero in a 

relatively small neighbourhood of the kth node and therefore only nearest neighbours of u and u are 
involved in the calculation. Its efficient evaluation for rectangular (two-dimensional) and box 
(three-dimensional) elements is discussed in detail by Staniforth and Beaudoin' who show 
that it is advantageous to use Simpson quadrature rather than Gaussian. The evaluation of the 
right-hand side of (20) takes O ( M N )  operations on an M x N grid for both rectangular and 
triangular elements (but triangular elements are more costly), and the prime difference in 
algorithmic efficiency is again the computational cost of solving a set of linear equations (the 
'mass-matrix problem' Pv = R). For rectangular elements the solution of this problem is 
approximately a factor of two less expensive than the evaluation of the RHS but, as mentioned 
above, for triangular elements it is considerably more costly, both in terms of arithmetic operations 
and storage. 

Additional economies possible with linear rectangular (and b o x )  elements, and a useful notation 

elements, consider the evaluation of 
As a further illustration of efficiency 'tricks' that may be employed when using linear rectangular 

(22) 

where u, u and D are all functions of the three dimensions x, y and z.  The Galerkin finite-element 
approximation to this equation may be written formally as 

(23) 

where P" and P, are tridiagonal one-dimensional operators having weights (hm- 1/6, (hm- + hm)/3, 
hJ6) and (-$,O, i), respectively, and with similar definitions obtaining for Py, P,, P' and P,. 

The solution of (23) is usually found by explicitly applying the six one-dimensional operators on 
the right-hand side and then successively 'inverting' the three one-dimensional operators on the 
left-hand side resulting in the successive application of nine operators of approximately equal cost. 
However we can achieve exactly the same result with half the work (i.e. by applying four operators 
instead of nine). To see this, we formally multiply (23) by (P")-'(Py)-l(Pz)-l and use 
commutativity of operators to obtain 

D = (P") - P, u + (P') - ' P, V. 

D = u, + uy, 

PXPYPZD = P,P"P'u + P,,P"P'v, 
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These formal operations may be justified rigorously, and the end result is equivalent to using one- 
dimensional FEs along lines of constant y to calculate ux, one-dimensional FEs along lines of 
constant x to calculate uy, and then summing the result. Such a simplification is not possible with 
triangular (or tetrahedral) elements. 

This is one example of the usefulness of the ‘subscript/superscript’ notation introduced above for 
rectangular (and box) elements. Another (similar) example is to consider the solution of the three- 
dimensional mass matrix problem Pv = r, where r is given. Rewriting P as the product (PxPyPz) of 
one-dimensional operators, this problem reduces to the successive solution of three sets of one- 
dimensional problems, namely 

(i) solve P f  = r for columns (fixed x and y) 
(ii) solve Pyg = f for fixed x and z 
(iii) solve P”v = g for fixed y and z. 

Again, the algorithm is of optimal order (i.e. 0(1) operations per node) and does not require any 
I/O to mass storage. Such a problem may, for example, be easily solved within memory on a 1 
million word Cray 1-S for a 51 x 51 x 51 mesh in 0026 seconds. 

Rectangular us. triangular elements 

Why are rectangular elements (and box elements in three-dimensions) in general more efficient? 
Because the underlying geometrical partitioning of the domain, together with the form of the basis 
functions, leads to matrices whose structure may be exploited. Although linear rectangular 
elements at first glance appear more expensive than triangular elements (they need four degrees of 
freedom to define them, rather than three), the fact that they are expressible as the product of one- 
dimensional elements leads to considerable economies in their manipulation. Not only are fewer 
operations and less memory required in general for rectangular elements than for triangular 
(tetrahedral) elements, they are also inherently more vectorizable (because they are well-ordered in 
memory and easily accessed), further enhancing efficiency. 

3. ELEMENT ORDER, SPATIAL EVOLUTIONARY ERROR 
AND CODE MODULARITY 

Having indicated in the previous section the high cost for even simple problems of linear triangular 
elements when compared to both linear rectangular elements and finite differences, we now restrict 
our attention to rectangular elements. The next question to address is ‘among rectangular 
elements, which ones are most suitable for fluid flow problems?. Put another way, is there any 
virtue to using higher-order elements (i.e. piecewise polynomials of higher order) such as quadratic 
or cubic elements, rather than linear elements? The answer appears to be no for several reasons, 
many of which may be found in Reference 12 in which Cullen and Morton analysed the error 
associated with calculating an advection term such as u a u / a x  directly or calculating it as a two- 
stage process (compute the derivative, then the product) when using linear elements in the context 
of an evolutionary problem. They concluded that both methods asymptotically give an O(h4) 
estimate for the spatial evolutionary error but that the two-stage method has a smaller coefficient. 
From a coding point of view, the two-stage method is probably to be preferred, since all terms may 
be computed in a modular way using a set of ‘kernel’ subroutines that handle the fundamental 
operations of differences, products and the solution of linear equations involving the mass matrix 
P. 

I t  has been found that quadratic elements are generally (there may be some exceptions) less 
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accurate and more costly than linear elements, not to mention more complicated. Why are they less 
accurate? Because they have no super-convergence properties at nodes. What about cubic 
elements? They can have super-convergence properties but are much more expensive to work with 
per degree of freedom, boundary conditions are difficult to implement, program complexity is 
increased and, because of their higher order, there are more computational modes to worry 
about. The law of diminishing returns seems to apply. 

4. STAGGERED, NON-STAGGERED AND MIXED-ORDER 
ELEMENTS AND THE FORM O F  THE GOVERNING EQUATIONS 

When formulating a fluid flow model, one often has to choose among several different forms of the 
governing equations. Furthermore, in the finite-element framework one is not restricted to using 
the same elements for all variables. Two possibilities come immediately to mind. First it is possible 
to use equal-order elements on a staggered grid (by analogy with staggered FD formulations). 
Secondly it is possible to use the same grid for all variables but to use mixed-order elements (i.e. 
expand some of the dependent variables in terms of one set of elements, and the others in terms of 
another set of elements of different order). In an ideal world one would expect that the choice of the 
form of the governing equations would be independent of the choice of element. In fact, we do not 
live in an ideal world and the two choices are intimately linked. 

As a first example of how these two choices are linked, consider the shallow-water equations 
(( 1)-(3)). Williams' analysed various formulations for the FE solution of the linearized one- 
dimensional form of these equations using linear elements on both staggered and unstaggered 
meshes, where either velocity components or vorticity and divergence (as in the Introduction of the 
present study) were used as the momentum variables. His analysis indicates that to obtain good 
results with linear elements it is necessary to use either 

velocity components as momentum variables, and stagger the nodal points for the free- 
surface height, or 

(i) 

(ii) vorticity and divergence as momentum variables and no staggering, 

and furthermore that using velocity components as momentum variables and no staggering 
propagates energy in the wrong direction and is likely to cause noise problems in a non-linear 
model. That the conclusions of this analysis also apply to higher dimensions and the non-linear 
equations is well supported by 

the absence of noise problems reported by Staniforth and Mitchell,'*14 Cullen and Hall'* 
and Staniforth and DaleyI6 when using vorticity/divergence formulations and unstaggered 
elements 

(ii) the importance of introducing artificial smoothing to eliminate noise problems when using 
velocity components and unstaggered elements, reported by Cullen' 

(iii) the absence of noise reported by Hua and Thomasset18 when using velocity components 
and staggered elements 

(iv) the noise problems reported by Walterslg for some of the formulations examined. 

Williarn~''~ analysis is applicable to equal-order (namely linear) elements. It is also possible to 
use mixed-order elements (e.g. linear elements for velocity components and constant elements for 
free-surface height and vice versa), and it was concluded by Williams and Zienkiewicz" and 
Walterslg that such schemes are viable. 

The above discussion is centred on horizontal considerations, but similar considerations should 

(i) 
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also be expected to apply in the vertical. An analysis of a linearized version of the vertical FE 
discretization scheme of Staniforth and Daley2' for the hydrostatic primitive equations is given by 
Beland et ~ 1 . ~ ~  The analysis is similar in concept to that of Williams,'3 but focuses on the vertical 
instead of the horizontal. For the particular scheme analysed (unstaggered linear elements) it was 
shown that there is no spurious vertical propagation of energy in the wrong direction and that the 
scheme is basically sound. This anlysis and that of C8te et ~ 1 . ~ ~  did however lead to the diagnosis of 
a weakness, namely the existence of a vertical computational mode. 

Although this mode may in principle be forced by the parametrized terms of the model, in 
practice it was found that a small amount of vertical diffusion adequately controls it. The source of 
the weakness was traced (see equation 10.20 of Reference 23) to the form chosen for the governing 
equations, and in particular to the treatment of the hydrostatic equation. A revised formulation has 
been successfully implemented by Beland and B e a ~ d o i n . ~ ~  

of the 
conservation properties of GFEM approximations to the Boussinesq equations. The basic idea is to 
expand each variable in terms of a finite-element space of unspecified order (or degree of 
continuity), and then to examine the conservation consequences of specific choices. An interesting 
feature of this framework is that it is easy to determine the minimum degree of continuity required of 
a certain variable after that of another has been set. The key point here is that if the finite-element 
space is too large (i.e. of too high an order) then computational modes will appear ('spurious 
pressure modes' in the terminology of Cliffe25). It appears therefore to be desirable to choose the 
element order for one of the dependent variables of the problem (the higher the order, the higher the 
degree of complexity of the final algorithm), and to choose the minimum order for the other 
variables that is required to satisfy the desired conservation laws. Although the present author is 
not convinced that the best schemes are necessarily those which exactly conserve certain quantities 
(rather than those that almost conserve a larger number) the above-mentioned framework is 
nevertheless a valuable analysis tool for choosing elements appropriate to a given problem. 

CliffeZ5 presented an interesting analysis (based on the earlier analysis of Lee et 

5. STABILITY 

The stability properties of FE schemes turn out to be very similar to those of F D  schemes. For 
pure advection (i.e. equation (3) with a non-divergent velocity field), a leap-frog scheme is 
conditionally stable whereas a forward (Euler) time scheme is unconditionally ~ n s t a b l e . ~  For 
pure diffusion, a leap-frog scheme is unconditionally unstable, whereas a forward scheme is 
conditionally stable. These conclusions hold true for both F D  and FE schemes, and the principal 
differences in stability are that the coefficients appearing in the stability conditions are slightly 
different. For one-dimensional advection, for example, a leap-frog scheme using linear FEs has 
a stability condition C = U At/Ax < 0.58, whereas for centred second-order FDs C < 1, and for 
centred fourth-order FDs C < 0.73. Thus the most restrictive of these schemes from the point 
of view of stability is the FE one; however it is also the most accurate, and the price for increased 
accuracy is thus increased cost (i.e. more time steps). 

A stability analysis of three different schemes (FD, FE and spectral) for solving the linearized 
shallow-water equations (cf. (1-3)) using a semi-implicit time scheme is given by Staniforth and 
Mitchell.' This analysis is performed in terms of response functions, and the conditions for stability 
for each of the three schemes is obtained by substituting the response functions appropriate to the 
method into the final result. The analysis was performed for a formulation using vorticity and 
divergence as momentum variables (cf.( 1)-(3)) and also for two different formulations using velocity 
components as momentum variables. For an FE discretization it was concluded that one of the 
velocity component formulations was not viable because it was overdamped, the other was not 
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viable because it was computationally too expensive, and that this is a direct consequence of using a 
semi-implicit time discretization. This choice of time discretization turned out to be quite 
fortunate, because only the vorticity/divergence formulation was left, which Williams’ later 
demonstrated was the only FE scheme on an unstaggered grid using linear elements that does not 
suffer from propagation of small scales in the wrong direction! 

A second example of a stability analysis is that given by Cote et aLZ3 for the hydrostatic 
primitive equations. This analysis, although applied principally to the vertical discretization FE 
scheme of Staniforth and Daley,” is also applicable to FD discretization schemes. It is similar 
to that described by Simmons et aLZ7 its principal virtues being that it is somewhat more general 
and less empirical. An explicit stability criterion (that the static stability of the reference 
temperature profile be greater than the explicit one) is given in the limit of small At for a case 
examined numerically by Simmons et aLZ7 and there is good agreement between the results. It 
was also shown that the first modes to go unstable if the criterion is violated are the computational 
modes due to the use of a (three time-level) semi-implicit time scheme. All of these conclusions 
apply equally well to FD schemes as they do to FE schemes, except for minor details. It seems in 
general that there are no further stability considerations to worry about, beyond those of FD 
schemes. 

6. SOME FURTHER CONSIDERATIONS 

Although finite-element Galerkin schemes are optimal in the sense that for a given choice of finite- 
element space they orthogonalize the error to the basis, this does not necessarily mean that in the 
context of a fluid flow model they are the optimum choice among algorithms of a given complexity. 
An illustration of this point may be found in Reference 1, where Staniforth and Mitchell showed 
that a minor change in the approximation of second derivative terms, and no changes elsewhere, 
led to a striking improvement in the accuracy of the results. To see why this is so, we examine the 
problem of evaluating second derivatives. 

Second derivatives 

Consider the problem of evaluating 

v = uxx, 

where u is known at the set of nodal points, and we require values of v at these same points. 
Expanding u and v in terms of linear FEs (cf. equation (13)) and orthogonalizing the error to the 
basis (by multiplying by an arbitrary basis function ek(x) and integrating over the domain) we 
obtain 

P”v = P,,U, (25)  

where P” and P,, are tridiagonal matrices having weights [h,- 1/6, (h, - + h,)/3, h,/6] and 
[l/hm-l, - l/h,- - I/h,, l/h,], respectively. It is easily shown by Taylor series that this gives an 
O(h2) approximation to the second derivative on any uniform subdomain, which is no better than 
that obtained for half the computational effort using centred second-order FDs. However, by 
rewritting (25) as 

P”v = Pxxu, (26) 

where P” has been modified to be a tridiagonal matrix having weights [h,- J2,5(hm- + h,)/12, 
h,/12], we obtain an O(h4) approximation at no extra computational cost as our reward for 
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venturing outside the Galerkin FE framework. One possible explanation for this phenomenon 
is that we are looking in the wrong mathematical space when we use linear FEs to approximate 
second derivatives. Linear FEs only permit a ‘weak’ (in mathematical terminology) approximation 
to such derivatives because of a lack of continuity of derivatives in our choice of finite-element 
space; for these terms we should really be looking in a space having an added degree of continuity, 
but in practice it is more expedient to ‘bend’ the rules of the Galerkin FE method. 

Staniforth and Mitchell’ demonstrated that this idea does not adversely affect the comput- 
ational stability of an FE fluid flow model (the shallow-water equations of section l), and can 
be used to good advantage for problems in higher dimensions such as the solution of the 
two-dimensional Poisson problem 

The approximation used for this problem was 

(PYP,, + PXP,,)f = PXPYg, (28) 

where P,, and Py are the analogues of P,, and P”, as redefined above. The resulting set ofdifference 
equations (involving a nine-point operator) was solved using discrete Fourier transforms, which 
are economical in their memory requirements ( O ( M N )  on an M x N mesh) and computational 
effort (O(MN log N )  operations). 

Aliasing 

Let us now turn our attention towards aliasing and compare the FE treatment with the F D  
treatment. It is well known that evaluating the pointwise product of the two terms involved in 
an advection term (such terms are implicitly contained in the RH sides of (1)-(3)) generally leads 
to non-linear computational instability in the context of an evolution problem. The cause of 
this instability is the aliasing of that part of the spectrum generated by the product that cannot 
be resolved by the mesh. The cure in all Eulerian methods (FD, FE, spectral, etc.) is to either 
implicitly or explicitly control this aliasing by smoothing (filtering) the result. The spectral method 
is the most direct and simply ignores the least significant half of the spectrum, whereas F D  
methods smooth by averaging various quantities. 

The optimum treatment of aliasing is therefore a trade-off between accuracy and stability; too 
little smoothing leads to computational instability, whereas too much degrades accuracy. Where 
does the FE method stand in all this? An illuminating example is given by comparing Arakawa’s2’ 
approximation for two-dimensional incompressible flow on a uniform grid with that of the FE 
method using linear elements. It was shown by J e ~ p e r s e n ~ ~  that the treatments of the advection 
terms are identical. The only difference between the two methods, therefore, is that the time 
derivative term in the FE approximation is multiplied by the projection (or mass) matrix P of 
section 2, and the FE method is consequently a little more expensive. However the FE 
approximation leads to an O(h4) estimate for the spatial evolutionary error12 rather than the O(h2) 
estimate for Arakawa’s2’ method, and the increased accuracy more than compensates for the 
added work. 

Noting that the application to one side of an equation of a ‘smoothing’ operator (such as the 
projection matrix P) is equivalent to the application to the other side of an ‘unsmoothing’ operator, 
the above result may be interpreted as follows: both methods control stability by using the same 
smoothing operator, but the FE method ‘sharpens the response’ to increase accuracy without 
adversely affecting stability, and is consequently a more efficient scheme. 
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Boundary conditions 

An often-overlooked aspect of the FE method when using linear elements as compared to 
higher-order F D  schemes, is the incorporation of boundary conditions. Higher-order FD schemes 
in the literature usually achieve better accuracy by involving more neighbouring points in the 
calculations, thus increasing the bandwidth of the matrices involved. For example, fourth order 
FD derivative approximations in one dimension involve five adjacent points rather than the 
three adjacent points of second-order FDs and the FE method using linear elements. In three-point 
schemes, the boundary conditions are used to obtain an equation associated with a boundary 
point, and the discretized governing equation is applied directly at  all internal points. With a 
five-point F D  scheme it is necessary to impose an extra computational boundary condition at 
all the internal points immediately adjacent to the boundary in order to obtain as many equations 
as there are unknowns. This can be a delicate procedure and if not done properly can result in 
the forcing of the computational modes associated with the use of a higher-order difference 
scheme. The linear FE scheme on the other hand can achieve fourth-order accuracy (for a first 
derivative, for example) without the need for additional (artificial) boundary conditions for the 
points immediately adjacent to boundaries. This is particularly advantageous when solving 
Poisson problems such as (10) and (1 1). 

Mapping domains 

The mapping of domains to a rectangle or box when using FE methods may be achieved in 
several ways. The most popular of these6 is to apply the FE method to the governing equations on a 
distorted mesh in physical space, and then evaluate the FE integrals after parametric transfor- 
mation to a uniform mesh. These integrals contain the Jacobian of the transformation and are 
usually evaluated numerically by Gaussian quadrature, although this is not necessarily optimal. I I 

An alternative approach, advocated by Srinivas and Fle t~her ,~ '  is to first transform the 
governing equations from physical space to transformed space and then to apply the FE method to 
the transformed equationsin transformed space. They argue that '. . . the resulting algorithm is both 
more accurate and more economical than applying the conventional finite-element method with 
an isoparametric mapping'. One disadvantage of this approach is a substantial increase in the 
number of terms in the governing equations after transformation (almost a tripling for their two- 
dimensional incompressible flow). 

A transformation of the governing equations to another co-ordinate system gives rise in general 
to variable coefficients and cross-derivative terms. A particularly useful transformation in this 
regard is the conformal transformation (Reference 31, Chapter 7). It is a global transformation (as 
opposed to being local as in a parametric transformation), and has several useful properties. In 
particular, angles are invariant under transformation and the del squared operator retains its form, 
except that it is multiplied by a variable coefficient. Tables of useful conformal 'mappings may be 
found in References 31 and 32. 

Flows that are conformally mappable to a rectangle include those in a periodic channel, around 
obstacles (e.g. aerofoils) in an unbounded domain, and within a rotating annulus. The polar- 
stereographic projection of the shallow-water equations over a sphere, given in the Introduction, is 
a further example of a conformally mapped flow; it is a particular case of the more general three- 
dimensional flow given by Staniforth and Daley.16 As can be seen from this last example, the 
governing equations do not become significantly more complicated after a conformal transforma- 
tion. The accuracy of solutions in the physical domain is determined by the accuracy of the 
solution in the transformed domain, and the solutions will be accurate provided strong gradients in 
the transformed domain are well resolved and the transformation is reasonably smooth. 
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7. TIME SCHEMES 

The choice of time discretization and how it interacts with the space discretization can have an 
important impact on the efficiency of a fluid dynamics code. The simplest time schemes are explicit. 
In these schemes the partial time derivative of a variable is isolated on the left-hand side of an 
equation and approximated in terms of a time difference involving the new and previous time steps, 
whereas the right-hand side is evaluated explicitly using known values of the dependent variables 
at previous time steps. The right-hand side may be evaluated using the traditional Galerkin FE 
method,6 by breaking it down into several steps” or by grouping them together as fluxes (the 
‘group FE method’ of Fletcher7). Terms on the right-hand side are evaluated using the methods 
described in the preceding sections, and the mass matrix problem (associated with the time 
differencing of the left-hand side) is solved using the efficient algorithm of section 2. 

Explicit time schemes are very efficient and appropriate for problems where the time step is 
restricted by the time truncation error rather than by stability considerations. However, they are 
not particularly efficient for stiff sets of equations (such as the shallow-water equations (1)-(3)), and 
it is often advantageous to treat some, or all, of the terms implicitly in time. This can be done in 
several ways. Baker and Soliman,6 for example, approximate all terms as time averages or 
differences over times nAt and (n + 1)At. This results in a set of coupled non-linear equations at 
each time step which are solved iteratively. The advantage of such an approach is that fewer time 
steps are required for stiff systems of equations because of the enhanced stability. The disadvantage 
is that each time step is more costly than that of an explicit time scheme because of the need to 
iterate. Nevertheless this approach can be cost effective, provided that the time step may be 
increased significantly without loss of accuracy, and the iterative technique is efficient. Baker and 
Soliman6 ensure that the operator on the left-hand side is expressible as the tensor product of one- 
dimensional operators, which makes each iteration highly efficient. 

A related alternative is the family of alternating-direction implicit schemes such as those of 
Srinivas and Fletcher3’ and Cohn et ~ 1 . ~ ~  Here, terms of O(At2) at the new time step are added 
to a linearized time discretization of the equations in such a way as to obtain tensor product 
operators similar to those of Baker and Soliman6 The principal difference in the definition of 
the tensor product operators of the schemes is that those of Srinivas and Fletcher3’ and Cohn 
et are linear (and the linear matrix problem is solved explicitly), whereas that of Baker and 
Soliman6 is non-linear (and the non-linear matrix problem is solved iteratively). The alternating- 
direction implicit (factored) methods also have enhanced stability properties with larger time 
steps and have the advantage of requiring less computational effort per time step than the fully 
implicit scheme of Baker and Soliman.6 The disadvantage of the alternating-direction implicit 
methods is that although they are stable with large time steps they are unfortunately not 
necessarily accurate. This has been shown by Yakimiw and Robert34 to be the case for the 
discretization by Cohn et of the shallow-water equations. 

A further alternative, particularly effective for stiff sets of equations, is to identify those terms that 
are responsible for restricting the time step because of stability. The linear contributions of these 
terms are then treated implicitly in time, whereas perturbations about them, and the remaining 
terms, are treated explicitly. This idea was first applied to a finite-difference discretization of the 
shallow-water equations by Kwizak and Robert,35 who found that such a scheme (which they 
termed semi-implicit) is five times more efficient than an explicit leap-frog scheme. Later, Staniforth 
and Mitchell’-’4 applied it to an FE discretization of the same equations with a similar 
improvement. 

The extension to the three-dimensional hydrostatic primitive equations was first demonstrated 
for an F D  discretization by Robert et and subsequently by Staniforth and Daley16 for an FE 
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formulation. The hydrostatic primitive equations are a set of three-dimensional dynamic equations 
that govern (at least to leading order) the flow of the atmosphere. They include the horizontal 
momentum equations, the equation of continuity (including compressible effects), the thermody- 
namic equation, an equation of state and the hydrostatic equation. This last equation replaces the 
vertical momentum equation, and consists of its two most important terms, which are in 
approximate balance and several orders of magnitude larger than the neglected ones. 

Semi-implicit schemes offer a good compromise for stiff systems of equations. They require 
fewer time steps than explicit schemes (because of their enhanced stability) and yet do not require 
significantly more computations per time step. 

8. CONCLUSIONS-OPTIMAL (?) SCHEMES 

For fluid flow problems in regular domains, it appears at this time that triangular (and tetrahedral) 
elements cannot in general compete with rectangular (and box) elements, because they do not 
permit an efficient solution of the mass-matrix problem. An optimal (or close to optimal) scheme 
for given computational effort in this context is most likely to be achieved by a judicious mix 
of techniques. 

First derivative and product terms seem to be well handled by GFEM schemes using linear 
rectangular (and box) elements. They have the attributes of simplicity, accuracy stability and 
straightforward incorporation of boundary conditions, and compete favourably with fourth order 
FD schemes. However for these elements it is often advantageous to go outside the Galerkin 
framework when approximating second derivatives, as described in section 6. Higher-order 
rectangular elements are a possibility, but the introduction of more computational modes and 
added programming complexity are decided disadvantages, and the law of diminishing returns 
would seem to apply. 

It is important to analyse carefully the properties of linearized versions of the discrete models in 
order to obtain maximum accuracy and efficiency. Of particular importance is the form of the 
governing equations, uis-d-uis the choice of staggered, non-staggered and/or mixed-order 
elements, and the choice of an appropriate time scheme. 

In conclusion, the described techniques have been successfully applied to a variety of problems in 
regular domains, such as the three-dimensional time-dependent hydrostatic primitive equations; 
these are stiff and include first and second derivative terms, non-linearities, and variable coefficients 
due to a conformal mapping. 
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